US009110761B2

a2 United States Patent

Nelson et al.

US 9,110,761 B2
Aug. 18,2015

(10) Patent No.:
(45) Date of Patent:

(54) RESOURCE DATA STRUCTURES FOR (56) References Cited
FIRMWARE UPDATES
U.S. PATENT DOCUMENTS
(75) Inventors: Eric F. Nelson, Woodinville, WA (US);
James A. Schwartz, Jr., Seattle, WA 5,802,365 A 9/1998 Kathail et al.
(US); Sunil K. Muthuswamy, Kirkland, 6,976,252 B2 12/2005 White et al.
WA (US) (Continued)
(73) Assignee: Microsoft Technology Licensing, LL.C, FOREIGN PATENT DOCUMENTS
Redmond, WA (US) WO WO 2009023296 212009
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this . . . o
patent is extended or adjusted under 35 Is)etrlldOHu’tEleonora etsal"t Au,tf)r?]at_ed Flg}n‘;je Iipddatmg Sm ;“ar%;
cale neterogeneous systems™, Universily of Amsteraam, Sysiem
U.S.C. 154(b) by 75 days. Network Engineering, retrieved from <https://www.os3.nl/__media/
2010-2011/courses/lia/eleonora_jochem__report.pdf?id=2010-
(21) Appl. No.: 13/534,585 2011%3 Acourses%?3 Alia%3 Astart&cache=cache> on Apr. 13,
2012,(Mar. 28, 2011), 19 pages.
(22) Filed: Jun. 27,2012 (Continued)
. L. Primary Examiner — Don Wong
(65) Prior Publication Data Assistant Examiner — Anibal Rivera
US 2014/0007067 Al Jan. 2, 2014 (74) Attorney, Agent, or Firm —Kate Drakos, Micky
Minhas; Wolfe-SBMC
(51) Imt.ClL 67 ABSTRACT
GOG6F 9/00 (2006.01) A firmware update system is described that collectively
GO6F 9/24 (2006.01) handles firmware updates for hardware resources of a com-
GO6F 15/177 (2006.01) puting device. The firmware update system may be config-
GO6F 11/30 (2006.01) ured to handle firmware updates in a consistent manner across
GO6F 12/14 (200 6. 01) different computing platforms/architectures. A data structure
. ’ is defined to associate each updateable resource with a cor-
(Continued) responding identifier to enumerate the updateable resources
52 US. Cl to the firmware update system. The firmware update system
(2) Ci’ C : GOGF 8/665 (2013.01 may reference the data structure to produce representations of
"""""""""""""""""""" (01) the each individual resource that provide an operating system
(58) Field of Classification Search level abstraction through which detection, analysis, acquisi-
CPC ..o GOG6F 8/30; GO6F 8/41; GO6F 8/60; tion, deployment, installation, and tracking of firmware

GOGF 8/61; GOG6F 8/64; GO6F 8/65; GO6F
8/67, GOG6F 8/68; GOGF 8/665; GOGF 9/44,
GOGF 9/4401; GOGF 9/4411; GOGF 9/44536;
GOGF 9/44589; GOGF 11/1435; GOGF 9/4406;
GOGF 9/4403
See application file for complete search history.

updates is managed. Using the representations, the firmware
update system operates to discover available firmware
updates collectively for the enumerated resources, match the
updates to appropriate resources, and initiate installation of
the updates.

20 Claims, 7 Drawing Sheets

600
_\

602 ‘\ Register one or more resources associated with a platform
for collective handling of firmware updates through an
aperating system of the platform

!

Detect firmware updates that are available for the
one or more resources that are registered

!

606
\ Ascertain available firmware updates that are applicable
to the one or more resources that are registered

!

Initiate installation of firmware updates that
are applicable to the one or more resources

604
\

608 —\

US 9,110,761 B2
Page 2

(51) Int.CL
GOGF 9/44
GOGF 3/00
GOGF 9/46
GOGF 11/00
GOGF 12/16
GOGF 9/445

(56)
Us.

B2
B2
B2
B2
B2
B2
B2
Bl
B2
B2
Bl
BL*
Bl
B2
B2
Al
Al
Al*
Al
Al*
Al
Al
Al
Al*
Al
Al*
Al
Al
Al
Al
Al
Al
Al
Al
Al*
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al*
Al
Al
Al*
Al
Al
Al
Al
Al*
Al
Al
Al
Al*
Al
Al

6,978,453

7,036,007

7,146,609

7,152,157

7,216,344

7,376,870

7,467,236

7,747,848

8,010,959

8,359,408

8,495,618

8,549,512

8,555,043

8,972,973

9,032,423
2002/0087734
2002/0092008
2002/0188836
2003/0041088
2003/0154368
2004/0003103
2004/0205779
2004/0215754
2004/0230963
2004/0255286
2005/0108700
2005/0240826
2006/0020937
2006/0130073
2006/0143600
2006/0174240
2006/0217111
2006/0224874
2007/0094673
2007/0277241
2008/0005733
2008/0028385
2008/0046877
2008/0126778
2008/0127165
2008/0250403
2009/0006832
2009/0064196
2009/0178033
2009/0287918
2009/0307680
2009/0328023
2010/0131746
2010/0218178
2010/0313191
2011/0072423
2011/0126043
2011/0154313
2011/0208975
2011/0271268
2012/0124567
2012/0180076
2013/0111459
2013/0179872

* %

*

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

References Cited

PATENT DOCUMENTS

12/2005
4/2006
12/2006
12/2006
5/2007
5/2008
12/2008
6/2010
8/2011
1/2013
7/2013
10/2013
10/2013
3/2015
5/2015
7/2002
7/2002
12/2002
2/2003
8/2003
1/2004
10/2004
10/2004
11/2004
12/2004
5/2005
10/2005
1/2006
6/2006
6/2006
8/2006
9/2006
10/2006
4/2007
11/2007
1/2008
1/2008
2/2008
5/2008
5/2008
10/2008
1/2009
3/2009
7/2009
11/2009
12/2009
12/2009
5/2010
8/2010
12/2010
3/2011
5/2011
6/2011
8/2011
11/2011
5/2012
7/2012
5/2013
7/2013

Rao et al.
Schelling et al.
Thurston et al.
Murphy et al.
Cobb et al.
Kataria et al.
Saito et al.
Nallagatla et al.
Mullis, II et al.
Ganga et al.
Inbaraj et al.

Vannatter et al.

Nallagatla et al.
Cavalaris et al.
Knichel et al.
Marshall et al.
Kehne et al.
Gurumoorthy et al.
Wilson et al.

Stevens et al.

Witt et al.
Almeida et al.
Orleth et al.

Rothman et al.

Rothman et al.

Chenetal. ...

Dickenson et al.
Schaefer

Faist et al.
Cottrell et al.
Flynn

Marolia et al.
Luetal.

Hunt et al.

Repasietal.
Ramachandran et al.

Brown et al.
Ford

Bishop et al.
Mullis et al.

Moon et al.
Stevens et al.

Richardson et al.
Challener et al.

Goldstein et al.

Trufinescu
Bestland et al.
Cool et al.
Sakai

Yin et al.
Fukata
Anderson et al.
Nolterieke et al.
Sibert
Dang
Landry

Shutt et al.

Nakamoto
Kuzmack et al.

...... 717171

.......... 713/1

.......... 713/1

...... 717/168

...... 717/168

........ 726/24

...... 717/169
.......... 713/1

.......... 713/2

.......... 713/2

...... 717/170
713/189

...... 719/327

2014/0007069 Al 1/2014 Cavalaris

2014/0007073 Al 1/2014 Cavalaris

2014/0130151 Al1* 52014 Krishnamurthyetal. 726/22
2014/0259008 Al 9/2014 Bhattiprolu et al.

2014/0380340 Al 12/2014 Kanichel et al.

2015/0169316 Al 6/2015
OTHER PUBLICATIONS

Cavalaris et al.

Sinofsky, Steven “Building Windows for the ARM Processor Archi-
tecture”, retrieved from <http://www.feishare.com/attachments/
083__UEFIrequirements.pdf> on Apr. 12, 2012,(Feb. 9, 2012), 93
pages.

Sinofsky, Steven “Protecting the Pre-OS Environment with UEFI”,
retrieved from <http://blogs.msdn.com/b/b8/archive/2011/09/22/
protecting-the-pre-os-environment-with-uefi.aspx> on Apr. 11,
2012,(Sep. 23, 2011), 42 pages.

“The Evolution of the Unified Extensible Firmware Interface”,
Retrieved at <<http://www.multicoreinfo.com/research/intel/uefie.
pdf>>, Retrieved Date: Apr. 3, 2012, pp. 1-19.

“Intel® Itanium® Processor Family System Abstraction Layer
Specification”, Retrieved at <<http://www.intel.com/content/dam/
www/public/us/en/documents/specification-updates/itanium-sys-
tem-abstraction-layer-specification.pdf>>, Retrieved Date: Apr. 3,
2012, pp. 1-146.

“Oracle ILOM Platform Features for the Sun Fire X4170 M2 and
X4270 M2 Servers”, Retrieved at <<http://docs.oracle.com/cd/
E19245-01/821-0489-13/ilom30__supplement html>>, Retrieved
Date: Apr. 3, 2012, pp. 1-57.

“UEFI Support and Requirements for Windows Operating Systems”,
Retrieved at <<http://www.feishare.com/attachments/083__
UEFIrequirements.pdf>>, Apr. 24, 2009, pp. 1-7.

“International Search Report and Written Opinion”, Application No.
PCT/US2013/061091, Dec. 13, 2013, 11 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/534,678, Feb. 14,
2014, 15 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/534,632, Jan. 10,
2014, 21 pages.

“Final Office Action”, U.S. Appl. No. 13/534,632, May 22,2014, 21
pages.

“Final Office Action”, U.S. Appl. No. 13/534,678, Jul. 17, 2014, 15
pages.

“Non-Final Office Action”, U.S. Appl. No. 10/791,586, Aug. 8, 2006,
7 Pages.

“Non-Final Office Action”, U.S. Appl. No. 13/923,461, Oct. 7, 2014,
10 pages.

“Notice of Allowance”, U.S. Appl. No. 10/791,586, Jan. 29, 2007, 10
Pages.

“Notice of Allowance”, U.S. Appl. No. 13/923,461, Dec. 5, 2014, 4
pages.

“Preparing for Driver Installation”, Retrieved from <http://docs.
oracle.com/cd/E19963-01/html/819-3196/loading-1.html> on Apr.
29, 2013, 2010, 1 page.

“Specifying Driver Load Order”, Retrieved from <http://msdn.
microsoft.com/en-us/library/windows/hardware/{f5523 19(v=vs.
85).aspx> on Apr. 29, 2013, Sep. 29, 2011, 4 Pages.

Cavalaris, et al., “U.S. Application as Filed—Firmware Update Dis-
covery and Distribution”, U.S. Appl. No. 13/534,632, Jun. 27, 2012,
55 pages.

“Netdrive: A device Driver Implementation for Mass Storage Sharing
on IBM PC Compatibles Over Local and Wide Area Networks”,
Local Area Networks, Proceedings of the IFIP TC6 International
Conference on Local Area Network, Jan. 1990, 10 Pages.
“Non-Final Office Action”, U.S. Appl. No. 13/534,678, Dec. 1, 2014,
15 pages.

“Notice of Allowance”, U.S. Appl. No. 13/534,632, Oct. 24,2014, 14
pages.

* cited by examiner

U.S. Patent

100
w

Aug. 18, 2015

Sheet 1 of 7

Computing Device 102
e ™
Processing
System 104

\\

(Computer-Readable A

Media 106
(Operating System\
108

Applications
110

. N
Firmware ¢
Manager 126 -

_ [y
\\

e ™\
Hardware
Resources 124
\\ y

~

’
’
’

US 9,110,761 B2

Resource
Data 128

Y

Discovery
Module 130

Y

Update
Module 132

US 9,110,761 B2

Sheet 2 of 7

Aug. 18, 2015

U.S. Patent

]

Ly
18]j0U0D
yonoy

)
~—
<
o
-~

ANd.L

:

SLIve
J8[|ORU0D

AS/ONIN®

0cielL
Jepesy pien
as gsn

]

Vive
10880001d

olpny

6Livcl

JBJjoSU0D
1S0H gSnN

ciivel
josuesg

]

giivel
anH gsn

Z
%.g
X
e
o

43574
(uoid)
emLwen

- [\ 335742
¥0C diemulily 9dineQ JOSUSG [euay
obivel
I0suag Sdo
374}
(Lvz1L Iosueg ainssaid
108898201d D0S ©¥eT
(8)¥CT sosues olpey OdN
1812W0I8}200Y
e f‘_omcmw VIvel oipey
ssedwo
Z0¢ SIBMULIL] WRISAS woo wooienig
[€€)j 74
108UBS 0IAD Sizd}
oipey I4IM
Y1 $902In0ss
vel d ZIve1 oipey
alempieH puegpeoig
SO

O

Z0T 9@o1naq Bunndwo)

U.S. Patent Aug. 18, 2015 Sheet 3 of 7 US 9,110,761 B2

300
w

Resource Data Structure 30

Identifiers 304 Descriptions 306 Metadata 308

SoC
Processor 124(1)

Mobile Broadband
.

{GUID, } N Radio 124(2) Metadata,

WiFi
f———————— .

{ GU‘Dg } Radio 124(3) Metadatas

{GUID; } ————— Metadata;

Bluetooth
{GUIDs}] Radio 124(4) Metadataa

NFC Radio
124(5) Metadatag

Gyro
{GUIDg} I E———— Senso?l124{6] Metadatag

{GUIDs } I —

Compass

{GUID;} B E— Sensor 124(7) Metadatay

Accelerometer

{GUIDg} B S— Sensor 124(8) Metadatag

Pressure
{GUIDy} - Sensor 124(9) Metadatag

GPS
{GUIDyp } B — Sensor 124(10) Metadatag

Thermal

-—
{ GU'D]_]_} Sensor 124(11) Metadatayq

Camera (Front)

{ GUlDlz } — 124(12] Metadataq,

Proximity

{GUIDx } B E— Sensor 124(13) Metadata3

Audio Metadat
Processor 124(14 etadatays

eMMC/SD
{GUIDss } 1 Controller 124(15) Metadatazs

TPM
124(16) Metadataqg

Touch
Controlier 124(17

USB Hub
124(18) Metadata,g

USB Host
P I——
{GUID5, } Controller 124(19) Metadata; g

{GU|D14} <'_

{GUID]_G} -

{GUIDy; }] Metadata,y

{GUIDj_g} B E——

USB SD Card

{GUIDx} € Reader 12420)

Metadatayg

{GUID,} — description Metadatay,

Fig. 3

U.S. Patent Aug. 18, 2015 Sheet 4 of 7 US 9,110,761 B2

400
w

402 (Instantiate a data structure configured to designate
\ a plurality of resources of a computing device
for which updates to firmware are handled
collectively through an operating system

Y

404 —
W Generate identifiers for each of the plurality]

of resources that are designated

(¢

406
\ Populate the data structure with entries for each of
the plurality of resources that include the identifiers

\

l

Expose the data structure to the operating system to
enable collective handling of the updates to firmware

408

U.S. Patent Aug. 18, 2015 Sheet 5 of 7 US 9,110,761 B2

500
R

502 ,
-\ Discover resources for a platform
that have updateable firmware

'

504 R Create representations to
virtualize the resources with respect to an
operating system of the platform

'

506 .
W Detect firmware updates available
for one or more of the resources

'

\
508 Distribute the detected firmware updates to
corresponding resources to initiate
firmware updates by the resources

™~
J/

U.S. Patent Aug. 18, 2015 Sheet 6 of 7 US 9,110,761 B2

600
w

N
602 — | Register one or more resources associated with a platform
for collective handling of firmware updates through an
operating system of the platform
' \
604) .
Detect firmware updates that are available for the
\{ one or mare resources that are registered
' \
606 : . : :
Ascertain available firmware updates that are applicable
{ to the one or more resources that are registered
' \
608 e . ,
Initiate installation of firmware updates that
\{ are applicable to the one or more resources

U.S. Patent Aug. 18, 2015

700
_\‘

Sheet 7 of 7 US 9,110,761 B2

Platform 722

[Resources 724)

N

AN
N

~

;

rd

7
Ve
7

Computing Device 702

~

-

Interfaces 708

Processing Computer-readable
System 704 Media 706
Hardware Memory/
Elements 710 Storage 712
[10 M Firmware]

Manager 126

Television
718

US 9,110,761 B2

1
RESOURCE DATA STRUCTURES FOR
FIRMWARE UPDATES

BACKGROUND

Different hardware resources (e.g., modules, components.
and devices) of a computing system may have firmware for
which updates are published from time to time. Traditionally,
independent hardware vendors (IHVs) and original equip-
ment manufacturers (OEMs) are responsible for handling
firmware updates for their own hardware resources. Accord-
ingly, different vendors and manufacturer not only individu-
ally handle creation and testing of firmware for their hard-
ware, but may also establish different, independent and/or
proprietary mechanisms and systems for deploying and
applying updated firmware. Due in part to inconsistent han-
dling of firmware updates, users may have difficulty under-
standing and managing firmware updates and keeping firm-
ware update-to-date may be quite time consuming.

SUMMARY

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

A firmware update system is described. In one or more
embodiments, the firmware update system is implemented to
collectively handle firmware updates for a plurality of hard-
ware resources in a defined and consistent manner. The firm-
ware update system may be configured as an operating system
component that handles firmware updates across different
computing platforms and architectures. In one approach, a
data structure is defined to associate each updateable resource
with a corresponding identifier to enumerate the updateable
resources to the firmware update system. The firmware
update system may reference the data structure to produce
representations of the each individual resource that may be
employed to handle firmware updates. The representations
provide an operating system level abstraction through which
detection, analysis, acquisition, deployment, installation, and
tracking of firmware updates is managed. Using the represen-
tations, the firmware update system operates to discover
available firmware updates collectively for the enumerated
resources, match the updates to appropriate resources, and
initiate installation of the updates.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example operating environment in
which one or more embodiments of a firmware update system
can be employed.

FIG. 2 is a diagram showing example resources of a device
in accordance with one or more embodiments.

FIG. 3 is a diagram showing an example resource data
structure to convey information regarding resources to firm-
ware update system in accordance with one or more embodi-
ments.

FIG. 4 is a flow diagram that describes details of an
example procedure in accordance with one or more embodi-
ments.

FIG. 5 is a flow diagram that describes details of an
example procedure in accordance with one or more embodi-
ments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 6 is a flow diagram that describes details of an
example procedure in accordance with one or more embodi-
ments.

FIG. 7 is a block diagram of a system that can implement
the various embodiments.

DETAILED DESCRIPTION

Overview

Traditionally, independent hardware vendors (IHVs) and
original equipment manufacturers (OEMs) are responsible
for handling firmware updates for their own hardware
resources, which may make keeping firmware up-to-date
complex and time consuming.

A firmware update system is described that collectively
handles firmware updates for hardware resources of a com-
puting device. The firmware update system may be config-
ured to handle firmware updates in a consistent manner across
different computing platforms/architectures. A data structure
is defined to associate each updateable resource with a cor-
responding identifier to enumerate the updateable resources
to the firmware update system. The firmware update system
may reference the data structure to produce representations of
the each individual resource that provide an operating system
level abstraction through which detection, analysis, acquisi-
tion, deployment, installation, and tracking of firmware
updates is managed. Using the representations, the firmware
update system operates to discover available firmware
updates collectively for the enumerated resources, match the
updates to appropriate resources, and initiate installation of
the updates.

In the discussion that follows, a section titled “Operating
Environment” is provided and describes one environment in
which one or more embodiments can be employed. Following
this, a section titled “Firmware Update System Examples”
describes example techniques and details in accordance with
one or more embodiments. Last, a section titled “Example
System” describes example computing systems and devices
that can be utilized to implement one or more embodiments.

Operating Environment

FIG. 1 illustrates an operating environment in accordance
with one or more embodiments, generally at 100. The envi-
ronment 100 includes a computing device 102 having a pro-
cessing system 104, one or more computer-readable media
106, an operating system 108, and one or more applications
110 that reside on the computer-readable media and which are
executable by the processor(s). The processing system 104
may be configured in various way to retrieve and execute
computer-program instructions from applications 110 to pro-
vide a wide range of functionality to the computing device
102, including but not limited to gaming, office productivity,
email, media management, printing, networking, web-brows-
ing, and so forth. A variety of data and program files related to
the applications 110 can also be included, examples of which
include games files, office documents, multimedia files,
emails, data files, web pages, user profile and/or preference
data, and so forth.

The computing device 102 can be embodied as any suitable
computing system and/or device such as, by way of example
and not limitation, a gaming system, a desktop computer, a
portable computer, a tablet or slate computer, a handheld
computer such as a personal digital assistant (PDA), a cell
phone, a set-top box, and the like. For example, as shown in
FIG. 1 the computing device 102 can be implemented as a
television client device 112, a computer 114, and/or a gaming
system 116 that is connected to a display device 118 to dis-
play media content. Alternatively, the computing device may

US 9,110,761 B2

3

be any type of portable computer, mobile phone, portable
device 120, tablet or slate device 122, and may that include an
integrated display. Any of the computing devices can be
implemented with various components, such as one or more
processors and memory devices, as well as with any combi-
nation of differing components. One example of a computing
system that can represent various systems and/or devices
including the computing device 102 is shown and described
below in FIG. 7.

The computer-readable media can include, by way of
example and not limitation, all forms of volatile and non-
volatile memory and/or storage media that are typically asso-
ciated with a computing device. Such media can include
ROM, RAM, flash memory, hard disk, removable media and
the like. Computer-readable media can include both “com-
puter-readable storage media” and “communication media,”
examples of which can be found in the discussion of the
example computing system of FIG. 7.

The computing device 102 also includes a variety of dif-
ferent hardware resources 124 that represent different com-
ponents and devices typically associated with the computing
devices. The hardware resources 124 may include integrated
components, removable components, and external peripheral
devices connectable to the computing device 102 via wired
and/or wireless connections. At least some of the hardware
resources 124 include firmware that may be updated in accor-
dance with the techniques described above and below.

A variety of different hardware resources 124 are contem-
plated. By way of example and not limitation, FIG. 2 depicts
generally at 200 some representative hardware resources 124
in relation to an example computing device 102. The com-
puting device 102 shown in FIG. 2 includes system firmware
202 that may be associated with the particular processing
system, architecture, and/or platform for the device, which in
this example is depicted as being a system on chip (SoC)
processor 124(1). Various other example hardware resources
shown in FIG. 2 that may have corresponding device firm-
ware 204 that is updateable include different radios, sensors,
controllers, components, and devices labeled as hardware
resources 124(2) to 124(20). Each resource may have its own
associated device firmware 204. Updates to device firmware
204 may be matched to resources and applied on an individual
basis. Additionally or alternatively, device firmware 204 for
some resources may be updated as part of an update to system
firmware 202 in a combined manner, further details of which
are discussed below.

The computing device 102 of FIG. 1 also includes a firm-
ware manager 126 that resides on the computer-readable
media and which is executable by the processor(s). The firm-
ware manager 126 represents functionality to implement a
firmware update system and perform various techniques to
collectively manage firmware updates for a plurality of hard-
ware resources 124 as described above and below. Although a
single firmware manager is depicted, multiple firmware man-
agers each configured to manage updates for one or more
hardware components may also be employed. The firmware
manager 126 may be implemented as a standalone compo-
nent as depicted in FIG. 1. The firmware manager 126 may
also be implemented as an integrated component of the oper-
ating system 108.

Management of firmware updates by the firmware man-
ager 126 may include, but is not limited to, discovery of
resources and detection, analysis, acquisition, distribution,
installation, and tracking of firmware updates for particular
resources that are registered or otherwise designated to obtain
firmware updates through the firmware update system. For
example, the firmware manager 126 may include or otherwise

20

30

40

45

55

60

4

make use of resource data 128 that enables the firmware
manager 126 to enumerate resources for which handling of
firmware updates through the system is designated. As
described in greater detail below, resource data 128 may be in
the form of a table or other suitable data structure that is
populated with entries corresponding to each updateable
resource.

By way of example and not limitation, functionality of the
firmware manager 126 may be logically divided into various
sub-modules, such as the example discovery module 130 and
update module 132 illustrated in FIG. 1. Generally speaking,
the discovery module 130 represents functionality to use the
resource data 128 to identify resources that are designated for
firmware handling by the system and detect available updates.
The discovery module 130 may also perform analysis to
match available updates to appropriate resources. The update
module 132 represents functionality to apply the updates,
which may include acquiring the updates in a suitable form
and deploying the updates to appropriate resources to initiate
installation. The update module 132 may also perform track-
ing of the updates to identify success or failure, record version
information for installed firmware, enable rollbacks of firm-
ware, and so forth. Some functionality described herein in
relation to the firmware manager 126 may also be imple-
mented by a boot loader for the operating system 108 and/or
by the operating system itself.

In this manner, responsibility for handling of firmware
updates may be offloaded to the firmware manager 126,
which is configured to collectively manage firmware updates
on behalf of different hardware resources 124 and/or corre-
sponding IHVs and OEMs. These and other aspects are
described in greater detail in relation to the following figures.

Having described an example operating environment, con-
sider now example details regarding a firmware update sys-
tem in accordance with one or more embodiments.

Firmware Update System Examples

In the following section, implementation details and
example techniques for a firmware update system configured
to collectively manage firmware updates are discussed. The
discussion includes some example procedure(s) that can be
implemented in connection with any suitable hardware, soft-
ware, firmware, or combination thereof. In at least some
embodiments, the procedures may be implemented by way of
a suitability configured computing device, such as the
example computing device 102 of FIG. 1 that includes or
otherwise makes use of a firmware manager 126, system
firmware 202, and device firmware 204. Details regarding
aspects of a suitable firmware update system are discussed in
turn below in different sub-sections titled “Resource Data
Structures,” “Discovery and Distribution” and “Heteroge-
neous Firmware Updates,” respectively.

Resource Data Structures

As noted previously, the firmware update system may rely
upon resource data 128 that is generally configured to
describe hardware resources for a platform that are to be
updated via a firmware update system provided by the oper-
ating system, as a standalone component, or otherwise. The
resource data 128 can be configured in various ways to enable
manufacturers and vendors to opt into firmware update func-
tionality that is implemented by the system.

Resource data 128 may be configured in any suitable way
to facilitate firmware updates. Broadly speaking, the resource
data 128 is configured to identify resources associated with a
platform to the firmware manager/operating system and con-
vey metadata that describes how to locate resources and cor-
responding firmware updates. The metadata may also indi-
cate how to interact with the resources to initiate firmware

US 9,110,761 B2

5

updates. Further, the metadata may encompass status infor-
mation regarding success, failure, and progress of firmware
updates and/or version information that indicates the current
versions of firmware. Status and version information may be
modified as part of the firmware update process to reflect
current data for the resource. The resource data 128 may also
reflect resource identifiers that may be used to reference the
resources and distinguish between resources throughout the
system.

The resource data 128 may be configured using designated
formats and conventions that the firmware manager recog-
nizes and is configured to process to identify and register
resources for firmware update handling. Thus, to take advan-
tage of the firmware update capabilities provided by the oper-
ating system, an IHV/OEM associated with a platform may
identify/advertise selected resources for collective firmware
handling through the system by populating resource data 128
in an appropriate format to describe platform resources. The
system may use the resource data 128 to create abstract rep-
resentations of the resources used to manage firmware
updates. In this manner, handling of the firmware updates for
the selected resources of the platform can effectively be off-
loaded to the firmware manager/operating system.

By way of example, FIG. 3 depicts generally at 300 an
example resource data structure 302, which corresponds to
the various hardware resources 124 represented in FIG. 2.
The resource data structure 302 may represent one or more
data files, database records, tables, table entries, objects, defi-
nitions, and/or other suitable structures that can be used to
encode resource data 128 for a platform. Here, identifiers 304
may be assigned to each individual resource and the resource
data structure 302 may be employed to convey data regarding
and/or offload firmware handling for any number “n” of
resources associated with the platform. In the depicted
example, the identifiers are represented as respective globally
unique identifiers (GUID) assigned to resources, although
any kind of identifiers suitable to reference and distinguish
between the resources of a platform may be employed. In
addition to the identifiers 304, resource data encoded by a
resource data structure 302 is depicted as including corre-
sponding descriptions 306 and metadata 308 that contain
various details regarding the resources for use by the system
to set-up and implement firmware management for the
resources.

As mentioned previously, resource data structure 302 may
be configured in various ways. By way of example and not
limitation, in some embodiments, the resource data structure
302 may be configured as a table for a Unified Extensible
Firmware Interface (UEFI) system. The UEFI is a standard
that defines parameters of an interface between an operating
system and system firmware for a platform. The UEFI pro-
vide standard conventions for describing aspects of a plat-
form to the OS through functions, methods, tables, and so
forth. Specifically, the UEFI provides infrastructure, conven-
tions, and techniques for data exchange and interaction
between system boot code and a boot loader of the OS during
booting as well as at runtime. In at least some embodiments,
the infrastructure defined per UEFI may be leveraged to cre-
ate a suitable resource data structure 302 for implementation
of'a firmware update system. Nonetheless, it should be appre-
ciated that a variety of other kinds of techniques, systems,
tables, and/or structures may also be employed to supply
resource data 128 for a platform to the firmware update sys-
tem in a comparable manner. Using the existing infrastructure
of UEFI, though, may avoid some complexity and duplicative
functions/effort that may be involved with developing a stan-

10

15

20

25

30

35

40

45

50

55

60

65

6

dalone system and/or conventions for implementing the
resource data structure 302 described herein.

As mentioned, the resource data structure 302 may be
implemented as a table, such as a UEFI table, that includes
entries for different resources. The entries in the table may
include at least identifiers 304, descriptions 306, and meta-
data 308 as discussed above. The entries in the table identify
and describe hardware resources that have updateable firm-
ware. This may include resource types and categorization
data; instructions/details regarding how to interact with the
resources and update the resources; links, locations, and/or
addresses that may be used to register for, download, or
otherwise obtain updates; and so forth. Moreover, metadata
308 for the entries may record status/version information
corresponding to the described resources. A variety of differ-
ent fields may be defined for entries in the table to capture
information that is sufficient to enable the firmware manager
126 to set-up and carry out updates.

As but one illustrative example of the foregoing concepts,
consider the following example tables, which represent some
example field definitions and entries, respectively. Informa-
tion represented by the example tables may be implemented
as a UEFI table or another suitable data structure as described
previously.

TABLE 1

Firmware Update Table Definition

Byte Byte
Field Length Offset Description
Firmware 4 0 The number of firmware resources
Resource selected for updates by the table
Count
Firmware 4 4 The number of resource array entries
Resource that can be added without reallocating
Maximum the table, must not be zero.
Firmware 8 8 The firmware resource entry version.
Resource
Version
Firmware Firmware Resource Entry 0
Resource
Entry Array
Firmware 16 16 Defines the class of systems for which
Class an update gets applied.
Firmware 4 32 Identifies the type of firmware resource
Type for the entry.
Firmware 4 36 The current firmware version, where a
Version larger number represents a newer
release.
Lowest 4 40 The lowest firmware version that can be
Supported rolled back to, i.e. the last firmware
Firmware version that contained a security fix.
Version Rollbacks to prior version may be
prevented for security
Update 4 44 This field is used to conveys
Package information regarding packages passed
Flags into a resource during the updating of
firmware a resource
Last 4 48 Version of the last firmware update
Attempt attempt.
Version
Last 4 52 Status of the last firmware update
Attempt attempt.
Status

Table 1 shows and provides descriptions of various
example fields that may be populated with resource data 128.
In addition to the descriptions contained in the table, consider
the following additional points regarding the example fields.
The firmware class field may contain the previously described
identifier 304 that identifies a firmware component that can be
updated via system. The system may use the identifier to
target updates to appropriate resources as described in detail
later in this document.

US 9,110,761 B2

7

The firmware type field describes the firmware resource
type. The following table provides one example of different
firmware types and values that be defined for resources via the
firmware type field.

TABLE 2

Firmware Type Field Values

Value Definition
0 Unknown
1 System firmware
2 Device firmware
3 Firmware driver

The update package flags are generally used to convey
information regarding packages passed into a resource during
the updating of firmware a resource. The values and structure
for this field depends upon the particular mechanism used to
deliver the update packages. The update package flags are
configured to represent and/or convey instructions regarding
how to handle packages for the firmware updates. For
instance, in a UEFI implementation the field may contains
capsule flags regarding update capsules that are passed into
the run-time service that consumes the updates.

The last attempt version field describes the last firmware
version for which an update was attempted and the last
attempt status provides an indication regarding the success or
failure of the last update attempt. A variety of values or codes
may be used to represent different possible outcomes of an
update. The following table provides one example of different
status types and values that may be defined for firmware
updates via the last attempt status field.

TABLE 3

Last Attempt Status Field Values

Value Definition

Success

Error: Unsuccessful

Error: Insufficient Resources

Error: Incorrect Version

Error: Invalid Image Format

Error: Authentication Error

Error: Power Event, AC Not Connected
Error: Power Event, Insufficient Battery

~ay W N = O

In accordance with the foregoing description of some
example fields and metadata, Table 4 below provides an
example resource data table with example entries for two
resources. In general, techniques for collective firmware
updates described herein apply to both system firmware asso-
ciated with core hardware of the platform and device firm-
ware that may be updated independently of system firmware.
One or more individual components may be updated in a
collective manner as part of an update to system firmware.
Accordingly, the table (or other data structure) is configured
to contain one entry for system firmware that may encompass
multiple individual devices/resources. In addition, the table
contains one entry for each additional device that is desig-
nated to employ the firmware update system for handling of
firmware updates. In this context, Table 4 illustrates both a
system firmware entry and one example device entry. Addi-
tional entries comparable to the example device entry may be
included to support any number of updatable devices.

10

15

20

25

30

35

40

45

50

55

60

65

8
TABLE 4

Firmware Update Table Example.

Field Value Comment

Firmware 2 This table contains two

Resource firmware resource entries.

Count

Firmware 2 This table allocation contains

Resource enough space to describe a

Maximum maximum of two resources.

Firmware 1 The firmware resource entry

Resource format version this table uses

Version is one.

Firmware Firmware Resource Entry O

Resource

Entry Array

Firmware {SYSTEM_FIRMWARE} This value identifies the

Class system firmware for updates

Firmware 1 System firmware type is one.

Type

Firmware 1 The current system

Version firmware version is one.

Lowest 1 The lowest supported

Supported firmware version is 1, so

Firmware firmware is prevented from

Version being rolled-back to a version
earlier than version 1.

Update 0 System firmware doesn’t

Package define any custom update

Flags flags.

Last 1 The last system firmware

Attempt version for which an update

Version was attempted was one.

Last 0 The last system firmware

Attempt update attempt was

Status successful.

Firmware Resource Entry 1

Firmware {DEVICE_FIRMWARE} This value the device

Class firmware for update.

Firmware 2 Device firmware type is two.

Type

Firmware 1 The current device firmware

Version version is one.

Lowest 1 The lowest supported

Supported firmware version is 1, so

Firmware firmware is prevented from

Version being rolled-back to a version
earlier than version 1.

Update 0x8010 Device firmware defines

Package private update flags (0x8010).

Flags

Last 1 The last device firmware

Attempt version for which an update

Version was attempted is one.

Last 0 The last device firmware

Attempt update attempt was

Status successful.

It is once again noted that the above described table and/or
UEFI implementations are provided as illustrative examples
of resource data structures suitable for use by a firmware
update system. In practice, a variety of different formats and
techniques for conveying resource data 128 to the firmware
manager 126 may be employed. For example, a table or other
data structure comparable to the foregoing examples may be
configured for other kinds of interfaces between an OS and
system boot code including, but not limited to, Advanced
Configuration and Power Interface (ACPI), custom applica-
tion programming interfaces (APIs), and Basic Input Output
System (BIOS) interfaces.

In another approach, the firmware manager 126 may be
configured to implement an interrogation scheme to request
and obtain resource data at various times. In this case, the
firmware manager 126 may invoke a method or make a func-
tion call to query system code for information regarding the
resources. This may occur during a boot sequence and peri-

US 9,110,761 B2

9

odically and/or on-demand thereafter. This interrogation
technique may be used in addition to or in lieu of populating
a table through which the OS may discover and enumerate
resources for a platform.

FIG. 4 depicts an example procedure 400 in which a
resource data structure is employed to enable collective firm-
ware updates. In at least some embodiments, the procedure
may be implemented by system firmware 202 of a computing
device.

A data structure is instantiated that is configured to desig-
nate a plurality of resources of a computing device for which
updates to firmware are handled collectively through an oper-
ating system (block 402). A variety of different techniques
may beused to define a designated format and conventions for
resource data 128 that maybe consumed by a firmware man-
ager, as discussed above and below. In one approach, a table
as described above may be defined with various descriptive
fields and corresponding metadata.

Identifiers are generated for each of the plurality of
resources that are designated (block 404). Here, the data
structure may be defined to include identifiers for each
resource that can be used to reference the resources and
distinguish between resources. The identifiers may also be
used to target firmware updates to appropriate resources.
GUIDs or other suitable identifiers may be employed as dis-
cussed previously.

The data structure is populated with entries for each of the
plurality of resources that include the identifiers (block 406).
Here, entries for system firmware and each updatable device
are added to the table or other data record. The data structure
is exposed to the operating system to enable collective han-
dling of the updates to firmware (block 408). The exposed
data structure provides a mechanism for identifying both
system firmware and device firmware for updating to the
operating system. In at least some embodiments, core system
firmware is responsible for allocating and populating the data
structure in the designated format. This may occur during a
boot sequence for the platform. A different instance of the
resource data structure may be instantiated for each boot
sequence to reflect current data for the firmware resources.
The data structure may be exposed to the operating system
108 and/or firmware manager 126 via UEFI or another suit-
able interface (e.g., ACPI, BIOS, custom APIs, etc.). The
OS/firmware manager may make use of the resource data 128
provided via the data structure to discover resources, config-
ure firmware updates, deploy the updates and otherwise set-
up and handle firmware updates for devices enumerated in the
data structure. Details regarding techniques for discovery and
deployment of firmware updates are discussed in the follow-
ing section.

Discovery and Distribution

This section describes example techniques for collective
management of firmware updates, which may include but is
not limited to discovery of updateable resources and distri-
bution of firmware updates to resources that are designated to
obtain firmware updates through the firmware update system.

As mentioned, a firmware update system implemented by
a firmware manager 126 may be configured to collectively
handle firmware updates for a plurality of resources.
Resources for a particular computing system or platform may
be described in a resource data structure 302 in a designated
format that the firmware manager 126 is configured to recog-
nize, such as the examples described in the preceding section.
Accordingly, the firmware manager 126 may make use of
resource data 128 contained in an appropriate resource data
structure 302 to enumerate resources for which handling of
firmware updates through the system is designated. Firmware

30

40

45

50

10

updates for the enumerated resources may be set-up and
managed by the firmware manager 126 based on resource
data 128 that is conveyed via the resource data structure.
Implementation details regarding techniques to collectively
manage firmware updates for resources are described in rela-
tion to the following example procedure.

In particular, FIG. 5 depicts an example procedure 500 in
which firmware updates for multiple resources are handled
collectively through a firmware update system. In at least
some embodiments, the procedure may be implemented by
firmware manager 126 of a computing device 102.

Resources for a platform that have updateable firmware are
discovered (block 502). This may occur in any suitable way.
For example, the firmware manager 126 may be configured to
interact with system firmware 202 to obtain resource data 128
that describes various resources associated with a computing
system. The interaction may occur via UEFI, ACPI, BIOS,
and so forth. In one approach, the firmware manager 126
discovers resources by referencing a resource data structure
302 in a suitable format as described previously. Each
resource may be identified by a corresponding identifier 302
and may be associated with respective descriptions 306 and/
or metadata 308. In addition or alternatively, the firmware
manager 126 may interrogate the system firmware 202
through prescribed methods and/or functions to find and/or
request resource data 128. In another example, system firm-
ware 202 may be configured to supply resource data 128 by
broadcasting the data in a defined manner, communicating
records/files/message for receipt by the firmware manager,
and so forth. Thus, the firmware manager 126 may obtain
resource data 128 in various ways and may use the resource
data 128 to enumerate resources that have updateable firm-
ware.

Representations are created to virtualize the resources with
respect to an operating system of the platform (block 504).
Here, the firmware manager 126 may create representations
in various formats that are configured to provide software
abstractions of the resources within the context of the oper-
ating system. The representations may be in the form of
objects, records, list items, and/or files that correspond to
each resource. Representations may be created for each
updateable resource that is enumerated. These virtual repre-
sentations of the underlying hardware may be employed to
set-up and manage firmware updates for the resources and/or
to facilitate interaction with the hardware to install the
updates. Creating representations for the enumerated
resources effectively registers the enumerated resources for
handling of firmware updates through the system.

In one example, the firmware update system is configured
to produce the representations using built-in operating system
functionality for general device management tasks for plug
and play devices and/or other devices. For example, the oper-
ating system may provide functionality to view hardware
devices and control the devices including for example view-
ing a list of devices and information regarding the devices,
enabling/disabling devices, updating device drivers, match-
ing drivers to devices, and so forth. Operating system infra-
structure for device management also provide functionality to
match driver updates to devices and initiate execution of
driver update packages for the devices. Effectively, tech-
niques, infrastructure, and user interfaces provided by the
operating system for management of plug and play devices
are extended to support collective firmware updates. More
generally, detecting and distributing of the firmware updates
may be performed through built-in operating system infra-
structure that is designed to handle other types of updates,
such as driver updates, application updates, and so forth.

US 9,110,761 B2

11

To make use of device management infrastructure, for
example, each resource having updatable firmware may be
represented as a plug and play device. Different resources are
assigned identifiers as previously described to reference and
distinguish between the resources. The resources may then be
discoverable via operating system APIs for device manage-
ment. The representations may also include information that
may be used to filter and categorize entries. The filter/cat-
egory information enables the OS to selectively retrieve, list,
expose, and/or interact with representations for resources
having updateable firmware. For example, representations
may be associated with resource types (e.g., system firmware/
device firmware) and/or an updateable firmware category
indication that can be used to distinguish from and filter out
other types of representations, such as device driver represen-
tations.

Once resources having updatable firmware are represented
as plug and play devices, firmware updates for the resources
may be acquired, processed, and distributed in manner com-
parable to updating device drivers. In at least some embodi-
ments, the firmware update packages may be formed in the
same format as driver packages that the device management
infrastructure recognizes and is able to handle. Here, the
format employed for device driver packages does not con-
strain the underlying payload of the package with respect to
what type of payload can be delivered. Accordingly, the
device management infrastructure may be leveraged to
handle and distribute firmware update packages in addition to
other kinds of packages, such as driver update packages. In
particular, firmware update packages/payloads are contained
in device driver style packages. When update packages are
available, the packages may be matched to corresponding
representations of the resources. This may occur by compar-
ing identifiers associated with the representations to identifi-
ers contained in the packages to match the updates and
resources one to another.

Naturally, the firmware manager 126 may alternatively
rely upon other comparable functionality to create virtual
representations of the underlying hardware and to handle
firmware updates for the resources. For example, rather than
relying upon the plug and play infrastructure, infrastructure
(e.g., techniques, components, and user interfaces) for repre-
senting and handling firmware updates may be integrated into
the firmware manager 126. In addition or alternatively, the
firmware manager 126 may rely upon other external content
management and update delivery systems designed to handle
updates for other types of content such as an application
update infrastructure or a notification system, to name a few
examples. Here, resources may be virtually represented as
content items with the content management system and
updates for the firmware may be handled through the system
along with other types of content. For example, updatable
firmware that is enumerated may be represented as installed
applications for the application update infrastructure or as
delivery endpoints/contacts for the notification system. Fur-
ther, other formats for firmware update packages/payloads
may also employed. Generally, the firmware updates are con-
figured as packages/payloads that correspond to the particular
content management system used to handle the updates. For
example, the updates may be configured as attachments to
notification system messages, as application update pack-
ages, as custom packages designed specifically for the firm-
ware update system, and so forth.

Firmware updates available for one or more of the
resources are detected (block 506) and the detected firmware
updates are distributed to corresponding resources to initiate
firmware updates by the resources (block 508). Again a vari-

10

15

20

25

30

40

45

55

60

65

12

ety of techniques to detect available updates may be
employed. For example, the firmware manager 126 may auto-
matically check for updates upon start-up and/or periodically
after system boot-up. In addition, firmware manager 126 may
check for updates on-demand responsive to an explicit selec-
tion to check for updates by user input, an application request,
orotherwise. Updates may be accessed and downloaded from
a server over a network on an individual basis (e.g., naviga-
tion of a browser to obtain selected updates) and/or automati-
cally as part of an overall software update management
scheme implemented by the OS. In addition or alternatively,
at least some updates may be transferred to a computing
device using some form of computer-readable media, such as
a compact disk, flash drive, or other media device.

In accordance with the foregoing, the firmware manager
126 may generate and/or reference a list of registered
resources using representations for the resources. The list of
registered resources may be employed by the firmware man-
ager 126 to check for updates, match updates to resources,
distribute updates to appropriate resources and so forth. Ver-
sion information and status information may also be associ-
ated with the representations/list. The version information
enables the firmware manager 126 to determine which
updates are applicable.

The representations provide a mechanism to target firm-
ware updates to corresponding resources. Updates may be
obtained through one or more different distribution mecha-
nisms, some examples of which are discussed above. When
updates are available, the firmware manager 126 may match
the updates to representations of the resources. Matches may
be found based in part upon version information. For
example, the firmware manager may recognize the current
version of firmware that is installed for a particular resource
and determine when a newer version is available. Older ver-
sions of the firmware may be ignored and therefore may not
produce matches, unless a rollback to a previous version is
initiated. The firmware manager may also check to make sure
that updates are intended for the particular platform. For
example, some updates may be specific to processor archi-
tecture or other specific configuration aspects of the platform.
Any updates that are not designated for the particular plat-
form may also be ignored.

The firmware manager 126 may stage any matching firm-
ware packages such that the packages are executed during the
next boot sequence to cause installation of the updates. This
may involve processing the firmware packages, extracting the
payloads, and/or copying the payloads for the updates to a
designated storage location. In addition, the firmware man-
ager 126 may prepare the system to perform the firmware
updates and/or trigger a system restart to initiate installation
of the updates. Upon system reboot, the firmware manager
may load the payloads into physical memory and create an
array of pointers for installation. The array and the payloads
may then be passed into system firmware to perform the
updates.

Generally speaking, firmware update packages are distrib-
uted as payloads that are conveyed by the OS/firmware man-
ager for consumption by the resources and/or system firm-
ware. This may occur by invoking a service implemented by
system firmware through a suitable interface. The package
may contain an identifier for a corresponding resource, a
binary file that encompasses the firmware image for the
update, and any additional information to enable the system
firmware to handle and execute the package. Ina UEFTimple-
mentation, for instance, the packages/payload may be passed
as UEFI update capsules by invoking an update capsule
method specified by UEFI. In addition or alternatively, binary

US 9,110,761 B2

13

images for firmware updates may be passed in using other
suitable interfaces and techniques, such as using ACPI, BIOS
or custom interfaces.

Generally, each firmware update package is targeted to a
particular firmware resource by including an identifier for the
resource in the package. It is possible though for a single
firmware update package to target multiple resources in some
circumstances. In addition, system firmware updates may
encompass multiple individual resources that are updated in
combination. It is also possible to designate each updateable
resource as part of the system firmware, such that a firmware
update for the platform occurs monolithically via a single
system firmware update package.

It should be noted that the firmware update system itself is
configured to target firmware update packages to resources
and hand off the packages to the system firmware to initiate
the updates. The firmware update system can do so without
having to process or understand the underlying format or code
of the payloads that are distributed. Rather, the system firm-
ware and/or a firmware service operate to apply the updates
defined by the payloads that are passed in by the update
system. Additionally, the firmware update system may have
little or no knowledge of the updateable resources outside of
the identifiers used to target updates to the resources. From
the perspective of the firmware update system, the updateable
resources are abstract representations referenced as respec-
tive identifiers. Thus, the firmware update system may be
unaware of the contents of the payloads it distributes or the
details regarding the resources to which the payloads are
distributed. Additional details regarding using the described
techniques to apply firmware updates to resource across dif-
ferent platforms are discussed in the following section

Heterogeneous Firmware Updates

In accordance with the foregoing discussion, a resource
data structure may be implemented in various was to provide
a mechanism that enables IHV/OEMs to advertise/identify
system and device firmware resources to the operating system
so that the operating system can take over handling of firm-
ware updates for these resources. In addition, an interface
between the OS and system firmware may be employed to
expose the resource data structure to the OS and provide a
mechanism for the OS to distribute firmware update packages
to the resources. In at least some embodiments, the firmware
update techniques may be implemented through a UEFI sys-
tem and/or a resource data structure configured as a UEFI
system table in the manner described above.

The described mechanisms to discover hardware resources
and distribute firmware updates may be employed across
heterogeneous platforms that may have different respective
computing architectures, hardware, configurations, capabili-
ties, and so forth. This section describes further details
regarding using a firmware update system as described herein
to handle updates across heterogeneous platforms.

To support different kinds of platforms, the firmware
update system may rely upon version information, identifiers,
driver versions and other information that is specific to a
platform and may differ for different kinds of platforms. This
information may be included as metadata 308 associated with
a resource data structure 302. During processing of firmware
updates, the firmware manager 126 may analyze the metadata
308 to match available updates to corresponding resources.
This may include determining the particular type of platform
for the updates and making sure that available updates from a
vendor/manufacturer are applicable to the platform. In some
cases, firmware for the same hardware resource may vary
according to the particular platform and therefore the firm-
ware manager 126 ensures that updates are appropriate for the

10

15

20

25

30

35

40

45

50

55

60

65

14

current platform. Checking for updates and matching of
updates may occur when the operating system boots and/or
periodically at run-time.

In at least some embodiments, identifiers that are associ-
ated with resources as described above may be configured as
platform specific identifiers. In this approach, the platform
specific identifiers may reflect both the identity of the
resource and the particular platform. One way this may occur
is by assigning different identifiers for hardware resources
associated with different platforms, such that each resource/
platform combination is assigned a different identifier. The
firmware manager 126 may then be able to recognize particu-
lar resource/platform combinations based on the different
identifiers. In another approach, version information and/or
other metadata may be used to identify and distinguish
between different platforms. In this way, the firmware man-
ager 126 may determine platforms to which updates are appli-
cable and decide whether or not to apply the updates.

In operation, the OS (through the firmware manager or
otherwise) may check whether any available/staged updates
apply to the described hardware resources specified in the
resource data structure. When applicable updates are
detected, the OS initiates the delivery of the firmware updates
to system firmware, which executes the updates. This may
occur using the UEFT update capsule method or other suitable
interfaces/mechanisms as described previously.

The system firmware operates to apply the updates in
response to distribution of the update packages. The manner
in which the updates are applied depends upon the particular
platform and system firmware implementation. By way of
example, this may involve one or more of copying files to a
persistent storage location, flashing non-volatile memory
locations, executing firmware native code, and/or adjusting
the system power state. During the update process, the system
firmware may be configured to display informational text or
images, branded messages, update status/progress indica-
tions, and so forth.

During the updates and/or upon completion of updates,
feedback regarding installation of the updates including the
status of each update, error information, progress indication,
and so forth may be supplied by the system firmware back to
the operating system. For example, the system firmware may
send a status message or a file describing the status for receipt
by the operating system. In addition or alternatively, the sys-
tem firmware may write or modify metadata in the resource
data structure that reflects the status of updates and/or any
new version information for installed firmware. The status
may express success or failure information, as well as details
regarding any errors that were encountered. The status infor-
mation obtained from the system firmware enables the oper-
ating system to track success/failure of the updates and ver-
sions of installed firmware. This status/version information
may be associated with representations used to manage the
resources and expose the information to users, such as
through plug and play device representations and correspond-
ing user interfaces described previously. The resource data
structure may also be modified to reflect newly installed
version information for firmware updates that were success-
ful if such information in not already added as part of the
installation process. Generally, the resource data structure
may be populated with current information/metadata for
installed firmware when a new instance of the resource data
structure is instantiated during a boot sequence.

The firmware update system is also configured to establish
and/or enforce security policies designed to prevent instabili-
ties/failures and to recovery from any unsuccessful installa-
tions. The security policies may specify pre-install checks to

US 9,110,761 B2

15

be performed examples of which include, validating the
source and integrity of update payloads, confirming the ver-
sion of the update, and ensuring that there is sufficient power
and storage available to perform the updates. Updates may be
aborted if one or more pre-install checks fail. The security
policies may also specify post-install checks examples of
which include checking the installed firmware image, con-
firming proper installation, reporting errors, and/or handling
any errors encountered.

In the case of failed installs and errors, a mechanism may
be implemented to recover from the failure/error. Generally
speaking, in response to errors the firmware update system
may selectively manage the update process. This may include
determining whether to halt operation, retry installation of the
update, rollback an update, or continue normal operation
based on the feedback. For example, installation may be
attempted a configurable number of times before aborting the
installation. If a decision is made to abort the installation, the
system may automatically rollback the firmware to a last-
known good firmware version. This may involve locating and
executing an install package corresponding to the last-known
good firmware version. Some errors considered relatively
minor in nature may be ignored and normal operations may be
continued.

As mentioned, for some updates a rollback to a previous
version may be prevented. This approach may be employed to
prevent rollback past a security update or another critical
update. Rollback prevention may occur by specifying a value
for the lowest supported firmware version field discussed
previously. In another approach, a new identifier for the
resource may be generated in response to the update so that
updates associated with previous identifiers will no longer be
determined by the operating system as applicable matches to
the resource.

Application of firmware updates to heterogeneous systems
in accordance with the foregoing description is reflected by
the following example procedure. In particular, FIG. 6 depicts
an example procedure 600 in which firmware updates corre-
sponding to a platform are detected and applied.

One or more resources associated with a platform are reg-
istered for collective handling of firmware updates through an
operating system of the platform (block 602). This may occur
using a suitable resource data structure as described previ-
ously. Firmware updates are detected that are available for
one or more resources that are registered (block 604) and
available firmware updates that are applicable to the one or
more resources that are registered are ascertained (block
606). As mentioned, identifiers associated with update pack-
ages may be used to determine applicability of updates and
target the updates to matching resources. This may include
matching updates to resources on a platform-specific basis
based on the identifiers and/or other metadata. This may also
involve checking version information for updates against cur-
rently installed versions. The current versions of firmware
may be reflected in the resource data structure and may be
changed as part of the update process when an update is
successfully installed.

Installation is initiated for firmware updates that are appli-
cable to the one or more resources (block 608). Here, appli-
cable updates that are determined to match resources are
configured for installation. For example, update packages
and/or payloads for the updates may be staged in a designated
storage location. The staged updates may then be accessed as
part of a boot sequence and delivered to system firmware for
installation. In this case, updates staged for installation are
those determined to be applicable to the particular platform.

10

15

20

25

30

35

40

45

50

55

60

65

16

On another platform, the firmware updated process may be
performed in a comparable manner, which in some instances
may result in a different set of platform specific update being
discovered and distributed.

Having considered example details and techniques regard-
ing a firmware update system, consider a discussion of an
example system in accordance with one or more embodi-
ments.

Example System

FIG. 7 illustrates an example system 700 that includes an
example computing device 702 that is representative of one or
more computing systems and/or devices that may implement
the various techniques described herein. The computing
device 702 may be, for example, a server of a service provider,
a device associated with a client (e.g., a client device), an
on-chip system, and/or any other suitable computing device
or computing system.

The example computing device 702 as illustrated includes
a processing system 704, one or more computer-readable
media 706, and one or more I/O interfaces 708 that are com-
municatively coupled, one to another. Although not shown,
the computing device 702 may further include a system bus or
other data and command transfer system that couples the
various components, one to another. A system bus can include
any one or combination of different bus structures, such as a
memory bus or memory controller, a peripheral bus, a univer-
sal serial bus, and/or a processor or local bus that utilizes any
of a variety of bus architectures. A variety of other examples
are also contemplated, such as control and data lines.

The processing system 704 is representative of functional-
ity to perform one or more operations using hardware.
Accordingly, the processing system 704 is illustrated as
including hardware elements 710 that may be configured as
processors, functional blocks, and so forth. This may include
implementation in hardware as an application specific inte-
grated circuit or other logic device formed using one or more
semiconductors. The hardware elements 710 are not limited
by the materials from which they are formed or the processing
mechanisms employed therein. For example, processors may
be comprised of semiconductor(s) and/or transistors (e.g.,
electronic integrated circuits (ICs)). In such a context, pro-
cessor-executable instructions may be electronically-execut-
able instructions.

The computer-readable media 706 is illustrated as includ-
ing memory/storage 712. The memory/storage 712 repre-
sents memory/storage capacity associated with one or more
computer-readable media. The memory/storage 712 may
include volatile media (such as random access memory
(RAM)) and/or nonvolatile media (such as read only memory
(ROM), Flash memory, optical disks, magnetic disks, and so
forth). The memory/storage 712 may include fixed media
(e.g., RAM, ROM, a fixed hard drive, and so on) as well as
removable media (e.g., Flash memory, a removable hard
drive, an optical disc, and so forth). The computer-readable
media 706 may be configured in a variety of other ways as
further described below.

Input/output interface(s) 708 are representative of func-
tionality to allow a user to enter commands and information to
computing device 702, and also allow information to be pre-
sented to the user and/or other components or devices using
various input/output devices. Examples of input devices
include a keyboard, a cursor control device (e.g., a mouse), a
microphone for voice operations, a scanner, touch function-
ality (e.g., capacitive or other sensors that are configured to
detect physical touch), a camera (e.g., which may employ
visible or non-visible wavelengths such as infrared frequen-
cies to detect movement that does not involve touch as ges-

US 9,110,761 B2

17

tures), and so forth. Examples of output devices include a
display device (e.g., a monitor or projector), speakers, a
printer, a network card, tactile-response device, and so forth.
Thus, the computing device 702 may be configured in a
variety of ways as further described below to support user
interaction.

Various techniques may be described herein in the general
context of software, hardware elements, or program modules.
Generally, such modules include routines, programs, objects,
elements, components, data structures, and so forth that per-
form particular tasks or implement particular abstract data
types. The terms “module,” “functionality,” and “component™
as used herein generally represent software, firmware, hard-
ware, or acombination thereof. The features of the techniques
described herein are platform-independent, meaning that the
techniques may be implemented on a variety of commercial
computing platforms having a variety of processors.

An implementation of the described modules and tech-
niques may be stored on or transmitted across some form of
computer-readable media. The computer-readable media
may include a variety of media that may be accessed by the
computing device 702. By way of example, and not limita-
tion, computer-readable media may include “computer-read-
able storage media” and “communication media.”

“Computer-readable storage media” may refer to media
and/or devices that enable persistent and/or non-transitory
storage of information in contrast to mere signal transmis-
sion, carrier waves, or signals per se. Thus, computer-read-
able storage media refers to non-signal bearing media. The
computer-readable storage media includes hardware such as
volatile and non-volatile, removable and non-removable
media and/or storage devices implemented in a method or
technology suitable for storage of information such as com-
puter readable instructions, data structures, program mod-
ules, logic elements/circuits, or other data. Examples of com-
puter-readable storage media may include, but are not limited
to, RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, hard disks, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
other storage device, tangible media, or article of manufac-
ture suitable to store the desired information and which may
be accessed by a computer.

“Communication media” may refer to a signal-bearing
medium that is configured to transmit instructions to the
hardware of the computing device 702, such as via a network.
Communication media typically may embody computer
readable instructions, data structures, program modules, or
other data in a modulated data signal, such as carrier waves,
data signals, or other transport mechanism. Communication
media also include any information delivery media. The term
“modulated data signal” means a signal that has one or more
of its characteristics set or changed in such a manner as to
encode information in the signal. By way of example, and not
limitation, communication media include wired media such
as a wired network or direct-wired connection, and wireless
media such as acoustic, RF, infrared, and other wireless
media.

As previously described, hardware elements 710 and com-
puter-readable media 706 are representative of instructions,
modules, programmable device logic and/or fixed device
logic implemented in a hardware form that may be employed
in some embodiments to implement at least some aspects of
the techniques described herein. Hardware elements may
include components of an integrated circuit or on-chip sys-
tem, an application-specific integrated circuit (ASIC), a field-
programmable gate array (FPGA), a complex programmable

10

15

20

25

30

35

40

45

50

55

60

65

18

logic device (CPLD), and other implementations in silicon or
other hardware devices. In this context, a hardware element
may operate as a processing device that performs program
tasks defined by instructions, modules, and/or logic embod-
ied by the hardware element as well as a hardware device
utilized to store instructions for execution, e.g., the computer-
readable storage media described previously.

Combinations of the foregoing may also be employed to
implement various techniques and modules described herein.
Accordingly, software, hardware, or program modules
including the operating system 108, applications 110, firm-
ware manager 126, discovery module 130, update module
132, and other program modules may be implemented as one
or more instructions and/or logic embodied on some form of
computer-readable storage media and/or by one or more hard-
ware elements 710. The computing device 702 may be con-
figured to implement particular instructions and/or functions
corresponding to the software and/or hardware modules.
Accordingly, implementation of modules as a module that is
executable by the computing device 702 as software may be
achieved at least partially in hardware, e.g., through use of
computer-readable storage media and/or hardware elements
710 of the processing system. The instructions and/or func-
tions may be executable/operable by one or more articles of
manufacture (for example, one or more computing devices
702 and/or processing systems 704) to implement techniques,
modules, and examples described herein.

As further illustrated in FIG. 7, the example system 700
enables ubiquitous environments for a seamless user experi-
ence when running applications on a personal computer (PC),
a television device, and/or a mobile device. Services and
applications run substantially similar in all three environ-
ments for acommon user experience when transitioning from
one device to the next while utilizing an application, playing
a video game, watching a video, and so on.

In the example system 700, multiple devices are intercon-
nected through a central computing device. The central com-
puting device may be local to the multiple devices or may be
located remotely from the multiple devices. In one embodi-
ment, the central computing device may be a cloud of one or
more server computers that are connected to the multiple
devices through a network, the Internet, or other data com-
munication link.

In one embodiment, this interconnection architecture
enables functionality to be delivered across multiple devices
to provide a common and seamless experience to a user of the
multiple devices. Each of the multiple devices may have
different physical requirements and capabilities, and the cen-
tral computing device uses a platform to enable the delivery of
an experience to the device that is both tailored to the device
and yet common to all devices. In one embodiment, a class of
target devices is created and experiences are tailored to the
generic class of devices. A class of devices may be defined by
physical features, types of usage, or other common charac-
teristics of the devices.

In various implementations, the computing device 702
may assume a variety of different configurations, such as for
computer 714, mobile 716, and television 718 uses. Each of
these configurations includes devices that may have generally
different constructs and capabilities, and thus the computing
device 702 may be configured according to one or more ofthe
different device classes. For instance, the computing device
702 may be implemented as the computer 714 class of a
device that includes a personal computer, desktop computer,
a multi-screen computer, laptop computer, netbook, and so
on.

US 9,110,761 B2

19

The computing device 702 may also be implemented as the
mobile 716 class of device that includes mobile devices, such
as a mobile phone, portable music player, portable gaming
device, a tablet computer, a multi-screen computer, and so on.
The computing device 702 may also be implemented as the
television 718 class of device that includes devices having or
connected to generally larger screens in casual viewing envi-
ronments. These devices include televisions, set-top boxes,
gaming consoles, and so on.

The techniques described herein may be supported by
these various configurations of the computing device 702 and
are not limited to the specific examples of the techniques
described herein. This is illustrated through inclusion of the
firmware manager 126 on the computing device 702. The
functionality represented by the firmware manager 126 and
other modules/applications may also be implemented all or in
part through use of a distributed system, such as over a
“cloud” 720 via a platform 722 as described below.

The cloud 720 includes and/or is representative of a plat-
form 722 for resources 724. The platform 722 abstracts
underlying functionality of hardware (e.g., servers) and soft-
ware resources of the cloud 720. The resources 724 may
include applications and/or data that can be utilized while
computer processing is executed on servers that are remote
from the computing device 702. Resources 724 can also
include services provided over the Internet and/or through a
subscriber network, such as a cellular or Wi-Fi network.

The platform 722 may abstract resources and functions to
connect the computing device 702 with other computing
devices. The platform 722 may also serve to abstract scaling
of resources to provide a corresponding level of scale to
encountered demand for the resources 724 that are imple-
mented via the platform 722. Accordingly, in an intercon-
nected device embodiment, implementation of functionality
described herein may be distributed throughout the system
700. For example, the functionality may be implemented in
part on the computing device 702 as well as via the platform
722 that abstracts the functionality of the cloud 720.

Conclusion

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

The invention claimed is:
1. A computing device comprising:
one or more hardware resources having updateable firm-
ware;
memory storing a resource data structure configured to
identify hardware resources for which updates to asso-
ciated firmware are designated for handling through a
firmware update system of the computing device, the
resource data structure including a field configurable to
identify a system firmware type and a device firmware
type for the identified hardware resources, the field using
different identifying type codes for the system firmware
type and the device firmware type; and
a firmware manager module executable by processing
hardware of the computing device configured to:
generate representations of resources identified by the
resource data structure as devices within a device
management system implemented as built-in func-
tionality of an operating system (OS);

10

15

20

25

30

35

40

45

50

55

60

65

20

create list items that are accessible for display and asso-
ciated with respective representations of the
resources; and

perform device management tasks for the computing
device including management of system firmware,
device firmware, and device drivers.

2. The computing device as recited in claim 1, wherein the
system firmware is further configured to instantiate the
resource data structure and populate the resource data struc-
ture with entries for selected hardware resources for which
updates to associated firmware are designated for handling
through the firmware update system.

3. The computing device as recited in claim 2, further
comprising an interface between the system firmware and the
OS of the computing device operable to expose the resource
data structure to the firmware update system through the OS.

4. The computing device as recited in claim 3, further
comprising the firmware update system configured to refer-
ence the resource data structure to enumerate the selected
hardware resources and configure firmware update handling
for the selected hardware resources.

5. The computing device as recited in claim 1, wherein the
resource data structure is configured to assign different iden-
tifiers to the hardware resources used by the firmware update
system to reference and target updates to the resources.

6. The computing device as recited in claim 1, wherein the
resource data structure is configured to include metadata to
indicate version information for installed firmware associated
with the hardware resources.

7. The computing device as recited in claim 1, wherein the
firmware update system is implemented as a component of
the OS of the computing device.

8. The computing device as recited in claim 1, wherein the
resource data structure is configured to include:

an entry for the system firmware, the system firmware

being associated with multiple hardware resources for
which associated firmware is updated collectively by
way of a single firmware package designated for the
system firmware; and

individual entries for each additional hardware resource for

which the associated device firmware is updated indi-
vidually through corresponding device firmware pack-
ages.

9. The computing device as recited in claim 1, wherein the
system firmware is associated with core hardware of the
computing device and the device firmware may be updated
independently of the system firmware.

10. The computing device as recited in claim 1, wherein the
field is further configured to identify a device driver type.

11. The computing device as recited in claim 1, wherein the
collective handling of the updates includes preventing roll-
back of firmware past a critical update for at least one of the
plurality of hardware resources.

12. A method implemented by a computing device com-
prising:

instantiating a resource data structure configured to desig-

nate a plurality of hardware resources of the computing
device for which updates to firmware are handled col-
lectively through an operating system (OS) of the com-
puting device, the resource data structure including a
field configurable to identify a system firmware type and
a device firmware type for the identified hardware
resources, the field using different identifying type
codes for the system firmware type and the device firm-
ware type,

populating the resource data structure with entries for each

of the plurality of hardware resources designated for

US 9,110,761 B2

21

collective handling of updates to firmware through the
OS, wherein the hardware resources are represented as
devices within a device management system of the OS;

exposing the resource data structure to the OS to enable the
OS to collectively handle the updates to system firm-
ware, device firmware, and device drivers through
device management functionality provided by the OS;
and

displaying a graphical user interface (GUI) that includes

the device management functionality and displays rep-
resentations of the hardware resources.

13. The method as recited in claim 12, further comprising
generating different identifiers each corresponding to one of
the hardware resources that are designated, the identifiers
employed by the OS to enumerate the hardware resources and
target firmware updates to the hardware resources.

14. The method as recited in claim 13, further comprising
obtaining firmware update packages supplied by the OS and
targeted to particular hardware resources using the identifiers.

15. The method as recited in claim 12, wherein the collec-
tive handling ofthe updates to includes preventing rollback of
firmware past a critical update based at least in part on a field
included in the resource data structure indicating a lowest
firmware version that is supported.

16. The method as recited in claim 12, wherein the collec-
tive handling ofthe updates to includes preventing rollback of
firmware past a critical update based at least in part on gen-
erating a new identifier assigned to at least one of the desig-
nated hardware resources so that at least one firmware update
matched to the at least one of the designated hardware
resources prior to the generating the new identifier is not
matched to the at least one of the designated hardware
resources upon the generating the new identifier.

17. One or more computer-readable storage memories stor-
ing instructions that when executed by a computing device
cause the computing device to implement a firmware man-
ager to perform acts comprising:

10

15

20

25

30

35

22

referencing a resource data structure instantiated by system

firmware to enumerate hardware resources, the resource

data structure configured to include:

a field configurable to identify a system firmware type
and a device firmware type for the enumerated hard-
ware resources, the field using different identifying
type codes for the system firmware type and the
device firmware type;

entries indicating hardware resources designated to use
afirmware update system of'an operating system (OS)
to handle firmware updates; and

viewable list items for the hardware resources to use in
the firmware update system; and

for hardware resources that are enumerated from the

resource data structure, configuring the firmware update
system to collectively manage system firmware, device
firmware, and device driver updates for the hardware
resources including creating representations of the hard-
ware resources as devices within native OS infrastruc-
ture employed for device management tasks.

18. One or more computer-readable storage memories of
claim 17, wherein the system firmware encompasses multiple
individual hardware resources for which associated firmware
is updated collectively.

19. One or more computer-readable storage memories of
claim 17, wherein the resource data structure includes infor-
mation regarding each hardware resource having indepen-
dently updateable firmware that is designated for updates
through the firmware update system.

20. One or more computer-readable storage memories of
claim 17, wherein the resource data structure includes iden-
tifiers for the hardware resources, descriptions of the hard-
ware resources, and metadata used to set-up and implement
firmware update handling by the firmware update system for
hardware resources as indicated by the resource data struc-
ture.

